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Context
• In analysis of spectra in typical particle physics experiment, techniques of 

covariance are often employed.   

• The intention of these notes is to provide the mathematical tools that go into 
such analysis without the heaviness of a course in the subject.   

• Most of this is known, but it is useful to have the basic structure for reference.   

• We will develop these tools with an eye towards a reactor neutrino experiment 
such as PROSPECT or beam experiment such as DUNE 

• In such an experiment, a source (which has some parameters) produces a 
spectrum which is detected in multiple detectors arranged at several different 
distances.  Each detector is characterized by a set of parameters such as 
position, size, resolution, etc.  Lastly, there are a set of parameters that are 
independent of the detector such as the interaction cross section.   

• The spectra observed in each detector must be analyzed with full 
understanding of these dependences.  
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Characteristic function method
A characteristic function is a Fourier transform of a probability density function (PDF).  
It makes combinations of probabilities easier to calculate and understand.  
X  is a continuous random variable with probability density function P(x) then the 
characteristic function is 

ϕX (k) = P(x)eikx dx   
−∞

∞

∫
This allows easy way to generate moments of the PDF. 
ϕ(k = 0) = 1  since it is the integral of the PDF. 

x = −i ∂ϕ
∂k

(k = 0)

x2 = − ∂2ϕ
∂k2 (k = 0) 

If X  and Y  are two random variables and z = f (x, y)   then the Characteristic function for Z is

ϕZ (k) = eikf (x,y)P(x)∫∫ dx Q(y)dy

To get the moments of f (x, y) often it is not necessary to evaluate the integral. 
e.g. f (x, y) = x + y ⇒  ϕZ (k) =ϕX (k).ϕY (k)  .... leave it for you to prove this 
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Obviously we can expand 

ϕX (k) = 1+ mn

n!
(ik)n +O(kN )

n=1

N

∑
where mn  are moments of the PDF about 0. If we take the logarithm of
the characteristic function then we can expand it.  This is called cumulant generator.

Log(ϕX (k)) = λn

n!
(ik)n +O(kN )

n=1

N

∑  

The λn  are called the cumulants of the PDF.  Cumulants and moments are related.
It is easier to work with cumulants sometimes. 
m1 = λ1                                  the mean
m2 = λ2 + λ1m1                     λ2  is the variance

m3 = λ3 + 2λ2m1 + λ1m2       λ3 = (X −m1)3  or third central moment
Higher order cumulants do not have simple explanations
Imagine X, Y are independent random numbers then obviously 
Log[ϕX+Y (t)]= Log[ϕX (t)]+ Log[ϕY (t)]
With a little thought one concludes that:  the cumulants of  the PDF of (X+Y)
are the sum of the cumulants for X and Y.  i.e. the mean of X+Y is the sum of the 
means of X and Y. The variance of X+Y is the sum of the variance of X and Y, and 
so on for any order of cumulants.  
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Gaussian PDF and its characteristic func. 
By definition 

P(x1,x2,...,xn )= Ne
− 1

2aij (xi−µi )(x j−µ j )i≤ j

n

∑
 

 
Gaussian multivariate PDF with a mean of µi  for all xi .  

N = (Det[2πaij ])
−1

2  is the normalization. 

The matrix aij  has to be positive definite. 

Define bij = Inverse[aij ]  →  this is the covariance matrix.  

let X = {x1, x2,...} and K = {k1,k2,...} for short-hand.  

ϕ(k1,k2,...,kn )= dX ⋅P(X)
−∞

∞

∫ eiK⋅X = e
i kj
j=1

n

∑ µ j
e
− 1

2bijkik ji≤ j

n

∑
 is the characteristic function 

The Fourier transform of a Gaussian yields a "Gaussian function" with  bij = [aij ]−1
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more about Gaussian
Start with the characteristic function of a multi-variate Gaussian

ϕ(K ) = e
i kj
j=1

n

∑ µ j
e
− 1

2bijkik ji≤ j

n

∑

The moments of the probability density can be obtained by differentiation
ϕ(K = 0) = 1  since it is the integral of the PDF. 

−i ∂ϕ
∂ki

(K = 0) = xi = µi

− ∂2ϕ
∂ki ∂kj

(K = 0) = xix j = 1
2
bij + µiµ j  for i ≠ j    and xi

2 = bii + µi
2   for i = j

General rule for any moment is x1
α1x2

α2 ...xn
αn = (−i)α1+α2+...+αn

∂α1+α2+...+αnϕ(k)
∂k1

α1 ∂k2
α2 ...∂kn

αn

k=0

The cumulant generator for a Gaussian shows 

Log[ϕ(k1,k2,...,kn )]= i k jµ j −
1
2j=1

n

∑ bijkik j
i≤ j

n

∑
that the Gaussian PDF does not have third or higher order cumulants.  
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Some simple rules and bivariate Gaussian. 
If X  and Y  are two random variables and z = f (x, y)   then the Characteristic function for Z is

ϕZ (k) = eikf (x,y)P(x)∫∫ dx Q(y)dy

ϕZ (k) is also known as the expectation value E[eikf (x,y) ]
ϕZ (k) =ϕX (k).ϕY (k)→  Log[ϕZ (k)]= Log[ϕX (k)]+ Log[ϕY (k)]

Now we setup explicit formula for bi-variate Gaussian to understand relations 

Log[ϕXY (t1,t2 )]= it1µX + it2µY −
1
2

(σ X
2 t1

2 + 2ρσ Xσ Y t1t2 +σ Y
2t2

2 )

PXY (x, y) = 1
2πσ Xσ Y 1− ρ 2

Exp[− 1
2(1− ρ 2 )

× x − µX , y − µY[ ].
1
σ X

2 − ρ
σ Xσ Y

− ρ
σ Xσ Y

1
σ Y

2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

·
x − µX

y − µY

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
]

PXY (x, y) = 1
2πσ Xσ Y 1− ρ 2

Exp[− 1
2(1− ρ 2 )

× (x − µX )2

σ X
2 + (y − µY )2

σ Y
2 − 2ρ

σ Xσ Y

(x − µX )(y − µY )
⎡

⎣
⎢

⎤

⎦
⎥

Notice that if  the covariance matrix is not full rank (rows are not indep.) then there is no PDF.
There can be confusion over random variables that are not-independent versus those that are
degenerate. Not independent does not mean degenerate. 
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Linear combinations
X and Y are indep Gaussian random numbers and 
Z = aX + bY ,  S =αX + βY . What is the joint char. function for Z and S ? 

ϕZS (t1,t2 ) = eit1(ax+by)∫ eit2 (αx+βy)PXY (x, y)dxdy

ϕZS (t1,t2 ) = ei(at1+αt2 )x∫ ei(bt1+βt2 )yPXY (x, y)dxdy

ϕZS (t1,t2 ) =ϕX (at1 +αt2 ).ϕY (bt1 + βt2 )

Take the logarithm and collect the terms to get the covariance of Z, S

Log[ϕZS (t1,t2 )]= i(at1 +αt2 )µX + i(bt1 + βt2 )µY -σ X
2

2
(at1 +αt2 )2 − σ Y

2

2
(bt1 + βt2 )2

= iµZt1 + iµSt2 −
σ Z

2

2
t1

2 − 1
2

(2ρZSσ Zσ S )t1t2 −
σ S

2

2
t2

2

From this one can just pick out the powers of t  for the cumulants (or moments).
µZ = aµX + bµY µS =αµX + βµY
σ Z

2 = a2σ X
2 + b2σ Y

2 σ S
2 =α 2σ X

2 + β 2σ Y
2

ρZS =
σ X

2aα +σ Y
2bβ

σ Zσ S
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Generalize for correlated random vars. 

Let X and Y be random variables with joint Gaussian PDF.  

Log[ϕXY (t1,t2 )]= iµXt1 + iµY t2 −
1
2

(σ X
2 t1

2 + 2ρXYσ Xσ Y t1t2 +σ Y
2t2

2 )

Put this in matrix form

           = i µX µY⎡
⎣

⎤
⎦

t1
t2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− 1

2
t1 t2⎡

⎣
⎤
⎦

σ X
2 ρXYσ Xσ Y

ρXYσ Xσ Y σ Y
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

t1
t2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Let Z  =  aX + bY   and S  =  αX + βY . The characteristic function is easily made
Log[ϕZS (t1,t2 )]= Log[ϕXY (at1 +αt2,bt1 + βt2 )]
The result is better expressed in matrix form

Z
S

⎡

⎣
⎢

⎤

⎦
⎥ =

a b
α β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

X
Y

⎡

⎣
⎢

⎤

⎦
⎥⇒

µZ

µS

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= a b

α β
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

µX

µY

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

σ Z
2 ρZSσ Zσ S

ρZSσ Zσ S σ S
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= a b

α β
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

σ X
2 ρXYσ Xσ Y

ρXYσ Xσ Y σ Y
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

a α
b β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

transpose
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example
Y1  and Y2  are jointly Gaussian.  N is an additional Gaussian r.v.  
E[Y1]= 1,  E[Y2 ]= −1,  E[N ]= 0
Var[Y1]= 4,  Var[Y2 ]= 1,  ρ12 = 1/ 2,  Var[N ]= 2{ }

Log[ϕ12N (T )]= iT '.
1
−1
0

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
− 1

2
T '

4 1 0
1 1 0
0 0 2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
T

X = Y1 −Y2 + N  and Z  =  Y1   what is the joint char. func. of X and Z 

E[X]
E[Z ]

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1 −1 1

1 0 0
⎧
⎨
⎩

⎫
⎬
⎭

1
−1
0

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
= 2

1
⎧
⎨
⎩

⎫
⎬
⎭

σ X
2 ρXZσ Xσ Z

ρXZσ Xσ Z σ Z
2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1 −1 1

1 0 0
⎧
⎨
⎩

⎫
⎬
⎭

4 1 0
1 1 0
0 0 2

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

1 1
−1 0
1 0

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪
= 5 3

3 4
⎧
⎨
⎩

⎫
⎬
⎭
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basic analysis structure and nomenclature 

Source parameters S = si{ }

beam

d1 d2

d3
Indep parameters Α={α j} (common for all)

detector parameters D1 = d1k{ }
Random vector for the spectrum R1 = R1l{ }

similar 
parameters for 
other detectors

Random vector for joint distribution
R = R1,R2,R3{ }  with mean µ1,µ2,µ2{ }
Block-wise Cavariance is 

Σ1 Σ12 Σ13

Σ12 Σ2 Σ23

Σ13 Σ23 Σ3

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

 where each Σ is a matrix of appropriate dimension

We now have to understand what it means if we measure one of the Rm

vectors and ask what the conditional PDF is for the others.  
Imagine the neutrino spectrum is measured in D1 and we now want to 
make a prediction for 2 and 3 given our understanding of the parameters. 
Basically, we are seeking the conditional probability for R2and R3  given R1 = r1
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some basics regarding conditional probability
Let PXY (x, y) be a joint probability density function for random variables X,Y ∈!. ϕXY (t1,t2 ) is the joint char. func.  
The marginal probability density for X  is 

PX (x) = PXY (x, y)dy
−∞

∞

∫
The characteristic equation for marginal probability density is obtained by setting the appropriate variables to 0.  
ϕX (t1) =ϕXY (t1,0)        This can be inverted to obtain PX (x)

What is the conditional probability density for Y  given X = x?

PY |X=x (y) = PXY (X = x, y)
PX (x)

     if PX (x) > 0

What is the conditional expectation of Y ?

E[Y | X = x]= yPY |X=x (y)dy
−∞

∞

∫
Notice that the conditional expectation for Y now becomes a random variable.

E[E[Y | X = x]]= ( yPY |X=x (y)dy) PX (x)
−∞

∞

∫
−∞

∞

∫ dx = yPXY (x, y)dxdy = E[Y ]∫
This is the law of total expectation.  similarly we can show
Var[Y ]= E[Var[Y | X = x]]+Var[E[Y | X = x]]
Total variance of Y is the sum of the "mean" variance under the condition X=x and the 
variance of the conditional expection of Y. 
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Let’s do this for bi-variate Gaussian
Log[ϕXY (t1,t2 )]= it1µX + it2µY −

1
2

(σ X
2 t1

2 + 2ρXYσ Xσ Y t1t2 +σ Y
2t2

2 )

PXY (x, y) = 1
2πσ Xσ Y 1− ρ 2

Exp[− 1
2(1− ρ 2 )

× x − µX , y − µY[ ].
1
σ X

2 − ρ
σ Xσ Y

− ρ
σ Xσ Y

1
σ Y

2

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

·
x − µX

y − µY

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
]

For marginal PDF of y

Log[ϕY (t2 )]= Log[ϕXY (0,t2 )]= it2µY −
1
2

(σ Y
2t2

2 )

⇒ PY (y) = N(µY ,σ Y
2 ) = 1

2πσ Y

Exp[− (y − µY )
2σ Y

2 ]  ....   N(,) stands for normal PDF

Conditional probability for X  given Y = y. (I do not know any tricks to do this)

PX|Y =y(x) = PXY (x, y)
PY (y)

= 1
2πσ X 1− ρ 2

Exp[−
(x − (µX +

σ X

σ Y

ρ(y − µY )))2

2σ X
2 (1− ρ 2 )

]= N(µX +
σ X

σ Y

ρ(y − µY ),σ X
2 (1− ρ 2 ))

The conditional expectation is µX +
σ X

σ Y

ρ(y − µY )

The conditional variance is      σ X
2 (1− ρ 2 )   This does not depend on y.

Special cases: The conditional expectation of x is linear with the variation of y from its mean.  
If both variables have the same variance and correlation →  1 then conditional expectation
of x→ µX + (y − µY ) with variance → 0. But notice there is then no density.
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The multivariate case
Let random vector R = {R1,R2} with dimensions n and  m
The means are given by the vector {µ1,µ2} block-wise covariance is 

Σ=
Σ11 Σ12

Σ21 Σ22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   this has sizes   n × n n ×m
m × n m ×m

⎧
⎨
⎩

⎫
⎬
⎭

Log[ϕR({T1,T2})]= i{T1,T2}.
µ1

µ2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− 1

2
{T1,T2}.

Σ11 Σ12

Σ21 Σ22

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

T1

T2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
By analogy Conditional expectation for R1  given R2 = A. These are all vectors. 

The conditional expectation E[R1 | R2 = A]= µ1 + Σ12Σ22
−1(A − µ2 )

The conditional co-variance  E[R1.R1 | R2 = A]− E[R1 | R2 = A]2 = Σ11 − Σ12Σ22
−1Σ21    This does not depend on A.

Check the dimensions.  Some observations:  
Knowing that R2 = A shifts the mean for R1 by Σ12Σ22

−1(A − µ2 )
Σ12Σ22

−1  is known to be the matrix of regression coefficients.
The covariance for R1 shrinks depending on the correlation matrix. 
Some care is needed here:  Σ11  and Σ22  may not be invertible if their rank is <n,m 
We will deal with the issue of rank later. For the moment assume that they are. 
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setup of the problem
Let's examine what the PDF of spectrum vector R means. 
First the PDF is not related to the statistics of the events.  

The spectrum R results from the process (generation of neutrinos from the source, 
and subsequent interactions of those events in the detectors) governed by a set of 
parameters {s,α ,d}.   These parameters have a covariance. We will imagine that the 
parameters are independent of each others.

Each time we perform the experiment, the parameters take on some values according 
to the covariance of the parameters.  

The covariance of the spectra results from the uncertainty of these parameters.  
In the limit that we do an infinite number of experiments, we will get variations
of spectra according to the probability density function.  

In the case of a single experiment, given the outcome of the spectrum in one detector
we want the best estimate for other detector spectra.  For this we need to know the
covariance of the joint PDF that results from the common set of parameters.  
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example (make it all 3x3 to avoid the problem of rank)
There are 3 indep. random parameters p={a,b,c} with means {0,0,0} and variances 1, and 4,2. 

Σab =
1 0 0
0 4 0
0 0 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

The spectrum random variables R1  have 3 elements and depends on {a,b,c}. 
R2  has 3 elements that depend on {a,b,c}.  Let's not worry about constant offsets. 

R1 = C1.p =
1 0 0

0.4 0.1 0
0.5 0.5 0.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a
b
c

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

          R2 = C2.p =
1 0.8 0

0.3 1 0
0 0.15 0.1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a
b
c

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Since both a and  b have a mean of 0,   R1 and  R2 also have a mean of 0

What is the expected mean and variance of R1  if a realization of R2 = r2 =
0.1
−2.4
0.05

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

First we have to build the block-wise co-variance matrix for {R1,R2}

C =
C1

C2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 and CT = C1
T C2

T⎡
⎣⎢

⎤
⎦⎥

Σ =
Σ11 Σ12

Σ21 Σ22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

C1ΣabC1
T C1ΣabC2

T

C2ΣabC1
T C2ΣabC2

T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     

 Remember that the maximum rank of each diagonal block is same as the rank of Σab
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what happens when there is not enough 
information in R2 ?

Let's change the previous example so that R2  does not "measure" one of the parameters

R2 = C2.p =
1 0.8 0

0.3 1 0
0 0.15 0.1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a
b
c

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
→→

1 0.8 0
0.3 1 0
0 0.15 0.0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a
b
c

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Now the rows of C2  are no longer independent and 

Σ22 =
3.56 3.5 0.48
3.5 4.09 0.6

0.48 0.6 0.09

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 is only semi-positive definite => Det[Σ22 ]= 0

A true inverse of Σ22  does not exist. But we actually do not 
need it.  We need the pseudo-inverse defined for a matrix A in this way
A.Ag .A = A. Let's not worry about how this calculation is to be done. The answer is
E[R1 | R2 = r2 ]= {2.52, 0.70, − 0.59}

Var[R1 | R2 = r2 ]=
0 0 0
0 0 0
0 0 0.5

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Since there is no information on parameter "c", the third element of R1 has remaining variance
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what happens when there are more parameters than 
measurements in R2 to constrain them

imagine 4 indep. random parameters p={a,b,c,d} with means {0,0,0,0} and variances 1, and 4,2. 

Σab =

1 0 0 0
0 4 0 0
0 0 2 0
0 0 0 6

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

   This is the normal situation in an experiment where there are parameters that are hard to constrain. 

The spectrum random variables R1  have 3 elements and depends on {a,b,c,d}. 
R2  has 3 elements that depend on {a,b,c,d}.  Let's not worry about constant offsets. 

R1 = C1.p =
1 0 0 0

0.4 0.1 0 0.3
0.5 0.5 0.5 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a
b
c
d

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

     R2 = C2.p =
1 0.8 0 0

0.3 1 0.1 0
0 0.15 0.3 0.9

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

a
b
c
d

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Since both a and  b have a mean of 0,   R1 and  R2 also have a mean of 0

What is the expected mean and variance of R1  if a realization of R2 = r2 =
0.1
−2.4
0.05

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

First we have to build the block-wise co-variance matrix for {R1,R2}

C =
C1

C2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 and CT = C1
T C2

T⎡
⎣⎢

⎤
⎦⎥

Σ =
Σ11 Σ12

Σ21 Σ22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

C1ΣabC1
T C1ΣabC2

T

C2ΣabC1
T C2ΣabC2

T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     

In normal circumstance the rank of both diagonal matrices should be 3. 18



continued on the example with 4 parameters
Calculate the matrices (they are somewhat different than before)  

Σ11 =
1 0.4 0.5

0.4 0.74 0.4
0.5 0.4 1.75

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Σ12 =
1 0.3 0

0.72 0.52 1.68
2.1 2.25 0.6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Σ21 =
1 0.72 2.1

0.3 0.52 2.25
0 1.68 0.6

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Σ22 =
3.56 3.5 0.48
3.5 4.11 0.66

0.48 0.66 5.13

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Calculate the matrix of regression coefficients. 

ΣRe = Σ12Σ22
−1 =

1.29 −1.02 0.011
0.524 −0.372 0.326
0.324 0.262 0.053

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 Recall r2 = {0.1,-2.4,0.05}

Conditional expectation for E[R1 | R2 = r2 ]= ΣRe.r2 = {2.58,0.963,−0.59}

Conditional variance Var[R1 | R2 = r2 ]=
0.02 −0.012 0.10

−0.012 0.008 −0.06
0.1 −0.06 0.45

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

and so although the errors have shrunk, they are not zero.  
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Continued work

Basics of bi-linear forms 
Estimation of the co-variance matrix  

Independence of parameters 
Estimation of parameters
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